Your browser doesn't support javascript.
loading
Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana.
Afiliación
  • Hatori Y; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
  • Yan Y; Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, Maryland 21205, USA.
  • Schmidt K; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
  • Furukawa E; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
  • Hasan NM; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
  • Yang N; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
  • Liu CN; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
  • Sockanathan S; Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, Maryland 21205, USA.
  • Lutsenko S; Department of Physiology, Johns Hopkins University, School of Medicine, 725 N. Wolfe street, Baltimore, 21205 Maryland, USA.
Nat Commun ; 7: 10640, 2016 Feb 16.
Article en En | MEDLINE | ID: mdl-26879543
ABSTRACT
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Adenosina Trifosfatasas / Cobre / Amidina-Liasas / Proteínas de Transporte de Catión / Vías Secretoras / Neurogénesis / Metalochaperonas / Glutatión / Oxigenasas de Función Mixta Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Adenosina Trifosfatasas / Cobre / Amidina-Liasas / Proteínas de Transporte de Catión / Vías Secretoras / Neurogénesis / Metalochaperonas / Glutatión / Oxigenasas de Función Mixta Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos