Your browser doesn't support javascript.
loading
Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release.
Liang, Fu-Cheng; Kroon, Gerard; McAvoy, Camille Z; Chi, Chris; Wright, Peter E; Shan, Shu-Ou.
Afiliación
  • Liang FC; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125;
  • Kroon G; Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037.
  • McAvoy CZ; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125;
  • Chi C; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125;
  • Wright PE; Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 wright@scripps.edu sshan@caltech.edu.
  • Shan SO; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; wright@scripps.edu sshan@caltech.edu.
Proc Natl Acad Sci U S A ; 113(12): E1615-24, 2016 Mar 22.
Article en En | MEDLINE | ID: mdl-26951662
ABSTRACT
Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP's transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Partícula de Reconocimiento de Señal / Chaperonas Moleculares / Proteínas de Arabidopsis / Complejos de Proteína Captadores de Luz / Proteínas de Cloroplastos Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Partícula de Reconocimiento de Señal / Chaperonas Moleculares / Proteínas de Arabidopsis / Complejos de Proteína Captadores de Luz / Proteínas de Cloroplastos Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article