Your browser doesn't support javascript.
loading
Improving Automated Annotation of Benthic Survey Images Using Wide-band Fluorescence.
Beijbom, Oscar; Treibitz, Tali; Kline, David I; Eyal, Gal; Khen, Adi; Neal, Benjamin; Loya, Yossi; Mitchell, B Greg; Kriegman, David.
Afiliación
  • Beijbom O; Department of Computer Science and Engineering, University of California, San Diego, CA 92093, USA.
  • Treibitz T; Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
  • Kline DI; Integrative Oceanography Division, University of California, San Diego, CA 92093, USA.
  • Eyal G; The Interuniversity Institute for Marine Sciences in Eilat, Eilat 8810368, Israel.
  • Khen A; Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
  • Neal B; Integrative Oceanography Division, University of California, San Diego, CA 92093, USA.
  • Loya Y; Catlin Seaview Survey, Global Change Institute, The University of Queensland, Brisbane, Qld 4072, Australia.
  • Mitchell BG; Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
  • Kriegman D; Integrative Oceanography Division, University of California, San Diego, CA 92093, USA.
Sci Rep ; 6: 23166, 2016 Mar 29.
Article en En | MEDLINE | ID: mdl-27021133
Large-scale imaging techniques are used increasingly for ecological surveys. However, manual analysis can be prohibitively expensive, creating a bottleneck between collected images and desired data-products. This bottleneck is particularly severe for benthic surveys, where millions of images are obtained each year. Recent automated annotation methods may provide a solution, but reflectance images do not always contain sufficient information for adequate classification accuracy. In this work, the FluorIS, a low-cost modified consumer camera, was used to capture wide-band wide-field-of-view fluorescence images during a field deployment in Eilat, Israel. The fluorescence images were registered with standard reflectance images, and an automated annotation method based on convolutional neural networks was developed. Our results demonstrate a 22% reduction of classification error-rate when using both images types compared to only using reflectance images. The improvements were large, in particular, for coral reef genera Platygyra, Acropora and Millepora, where classification recall improved by 38%, 33%, and 41%, respectively. We conclude that convolutional neural networks can be used to combine reflectance and fluorescence imagery in order to significantly improve automated annotation accuracy and reduce the manual annotation bottleneck.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Automatización / Fotograbar / Ecosistema / Organismos Acuáticos / Fluorescencia Tipo de estudio: Prognostic_studies Límite: Animals / Humans País/Región como asunto: Asia Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Automatización / Fotograbar / Ecosistema / Organismos Acuáticos / Fluorescencia Tipo de estudio: Prognostic_studies Límite: Animals / Humans País/Región como asunto: Asia Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido