Evaluation of a filament perforation model for mouse subarachnoid hemorrhage using 7.0 Tesla MRI.
J Clin Neurosci
; 28: 141-7, 2016 Jun.
Article
en En
| MEDLINE
| ID: mdl-27021225
The filament perforation model (FPM) in mice is becoming increasingly popular to elucidate the molecular pathogenesis of neuronal injury after subarachnoid hemorrhage (SAH). We evaluated brain MRI in a mouse FPM. A total of 28 male C57Bl/6J mice were used. Seventeen animals underwent SAH induction by FPM. In two animals, transient middle cerebral artery occlusion (MCAo) was induced. Nine mice served as controls. T1-weighted images (T1WI), T2-weighted images (T2WI), T2(∗)-weighted images (T2*WI) and apparent diffusion coefficient maps were acquired at day 0 and at various time points following SAH (range: day 1-6 after SAH). Cerebral blood flow (CBF) analysis by (14)C-iodoamphetamine ((14)C-IMP) autoradiography was conducted in nine animals. Hemorrhage could be best confirmed using T2*WI. The degree of hemorrhage varied. All animals evaluated for ⩾2days were hydrocephalic, which was best seen on T2WI. T2-hyperintensity of the corpus callosum and external capsule, indicating white matter (WM) injury, was present after SAH. Ventricle and WM injury volumes were statistically significantly higher at day 3 compared to day 0. Territorial ischemia was detectable in MCAo but not in SAH. Markedly hypointense cortical veins were visible in the hyperacute and delayed phase after SAH on T2*WI. The (14)C-IMP analysis indicated decreased CBF after SAH. MRI is feasible and useful in evaluating pathophysiological changes over time. T2*WI seems best for SAH detection and grading. The chronological change of hydrocephalus and WM injury could be analyzed. T2*WI illustrated specific signal changes of cortical veins, possibly caused by increased oxygen extraction fraction due to decreased CBF.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Hemorragia Subaracnoidea
/
Infarto de la Arteria Cerebral Media
Límite:
Animals
Idioma:
En
Revista:
J Clin Neurosci
Asunto de la revista:
NEUROLOGIA
Año:
2016
Tipo del documento:
Article
Pais de publicación:
Reino Unido