Your browser doesn't support javascript.
loading
QSPR prediction of the hydroxyl radical rate constant of water contaminants.
Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun.
Afiliación
  • Borhani TN; Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK. Electronic address: t.ngborhani@imperial.ac.uk.
  • Saniedanesh M; Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.
  • Bagheri M; Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
  • Lim JS; Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.
Water Res ; 98: 344-53, 2016 07 01.
Article en En | MEDLINE | ID: mdl-27124124
In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Radical Hidroxilo / Relación Estructura-Actividad Cuantitativa Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Water Res Año: 2016 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Radical Hidroxilo / Relación Estructura-Actividad Cuantitativa Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Water Res Año: 2016 Tipo del documento: Article Pais de publicación: Reino Unido