Your browser doesn't support javascript.
loading
Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships.
Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Trivedi, Chanda; Hu, Hangwei; Anderson, Ian C; Jeffries, Thomas C; Zhou, Jizhong; Singh, Brajesh K.
Afiliación
  • Trivedi P; Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia.
  • Delgado-Baquerizo M; Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia.
  • Trivedi C; Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia.
  • Hu H; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
  • Anderson IC; Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia.
  • Jeffries TC; Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia.
  • Zhou J; Institute for Environmental Genomics and Department of Botany and Microbiology, The University of Oklahoma, Norman, OK, USA.
  • Singh BK; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
ISME J ; 10(11): 2593-2604, 2016 11.
Article en En | MEDLINE | ID: mdl-27168143
ABSTRACT
A lack of empirical evidence for the microbial regulation of ecosystem processes, including carbon (C) degradation, hinders our ability to develop a framework to directly incorporate the genetic composition of microbial communities in the enzyme-driven Earth system models. Herein we evaluated the linkage between microbial functional genes and extracellular enzyme activity in soil samples collected across three geographical regions of Australia. We found a strong relationship between different functional genes and their corresponding enzyme activities. This relationship was maintained after considering microbial community structure, total C and soil pH using structural equation modelling. Results showed that the variations in the activity of enzymes involved in C degradation were predicted by the functional gene abundance of the soil microbial community (R2>0.90 in all cases). Our findings provide a strong framework for improved predictions on soil C dynamics that could be achieved by adopting a gene-centric approach incorporating the abundance of functional genes into process models.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microbiología del Suelo / Bacterias / Proteínas Bacterianas / Carbono Tipo de estudio: Prognostic_studies País/Región como asunto: Oceania Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2016 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microbiología del Suelo / Bacterias / Proteínas Bacterianas / Carbono Tipo de estudio: Prognostic_studies País/Región como asunto: Oceania Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2016 Tipo del documento: Article País de afiliación: Australia