Your browser doesn't support javascript.
loading
Detection of tubule boundaries based on circular shortest path and polar-transformation of arbitrary shapes.
Su, R; Zhang, C; Pham, T D; Davey, R; Bischof, L; Vallotton, P; Lovell, D; Hope, S; Schmoelzl, S; Sun, C.
Afiliación
  • Su R; School of Computer Software, Tianjin University, China.
  • Zhang C; CSIRO Data61, Epping, NSW, Australia. kone.zhang@gmail.com.
  • Pham TD; School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, Australia. kone.zhang@gmail.com.
  • Davey R; Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
  • Bischof L; CSIRO Food and Nutrition, Armidale, NSW, Australia.
  • Vallotton P; CSIRO Data61, Epping, NSW, Australia.
  • Lovell D; CSIRO Data61, Epping, NSW, Australia.
  • Hope S; CSIRO Data61, Acton, ACT, Australia.
  • Schmoelzl S; CSIRO Food and Nutrition, St. Lucia, Qld, Australia.
  • Sun C; CSIRO Food and Nutrition, Armidale, NSW, Australia.
J Microsc ; 264(2): 127-142, 2016 11.
Article en En | MEDLINE | ID: mdl-27172164
In studies of germ cell transplantation, counting cells and measuring tubule diameters from different populations using labelled antibodies are important measurement processes. However, it is slow and sanity grinding to do these tasks manually. This paper proposes a way to accelerate these processes using a new image analysis framework based on several novel algorithms: centre points detection of tubules, tubule shape classification, skeleton-based polar-transformation, boundary weighting of polar-transformed image, and circular shortest path smoothing. The framework has been tested on a dataset consisting of 27 images which contain a total of 989 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually and the novel approach can achieve a better performance than two existing methods.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: J Microsc Año: 2016 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: J Microsc Año: 2016 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido