Detection of tubule boundaries based on circular shortest path and polar-transformation of arbitrary shapes.
J Microsc
; 264(2): 127-142, 2016 11.
Article
en En
| MEDLINE
| ID: mdl-27172164
In studies of germ cell transplantation, counting cells and measuring tubule diameters from different populations using labelled antibodies are important measurement processes. However, it is slow and sanity grinding to do these tasks manually. This paper proposes a way to accelerate these processes using a new image analysis framework based on several novel algorithms: centre points detection of tubules, tubule shape classification, skeleton-based polar-transformation, boundary weighting of polar-transformed image, and circular shortest path smoothing. The framework has been tested on a dataset consisting of 27 images which contain a total of 989 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually and the novel approach can achieve a better performance than two existing methods.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
J Microsc
Año:
2016
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido