Your browser doesn't support javascript.
loading
Observation of Long-Range Elliptic Azimuthal Anisotropies in sqrt[s]=13 and 2.76 TeV pp Collisions with the ATLAS Detector.
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D.
Afiliación
  • Aad G; CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
  • Abbott B; Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA.
  • Abdallah J; Institute of Physics, Academia Sinica, Taipei, Taiwan.
  • Abdinov O; Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
  • Aben R; Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands.
  • Abolins M; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.
  • AbouZeid OS; Department of Physics, University of Toronto, Toronto, Ontario, Canada.
  • Abramowicz H; Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Abreu H; Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel.
  • Abreu R; Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA.
  • Abulaiti Y; Department of Physics, Stockholm University, Sweden.
  • Acharya BS; The Oskar Klein Centre, Stockholm, Sweden.
  • Adamczyk L; INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy.
  • Adams DL; ICTP, Trieste, Italy.
  • Adelman J; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
  • Adomeit S; Physics Department, Brookhaven National Laboratory, Upton, New York, USA.
  • Adye T; Department of Physics, Northern Illinois University, DeKalb, Illinois, USA.
  • Affolder AA; Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany.
  • Agatonovic-Jovin T; Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
  • Agricola J; Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom.
  • Aguilar-Saavedra JA; Institute of Physics, University of Belgrade, Belgrade, Serbia.
  • Ahlen SP; II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany.
  • Ahmadov F; Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal.
  • Aielli G; Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain.
  • Akerstedt H; Department of Physics, Boston University, Boston, Massachusetts, USA.
  • Åkesson TP; Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia.
  • Akimov AV; INFN Sezione di Roma Tor Vergata, Italy.
  • Alberghi GL; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy.
  • Albert J; Department of Physics, Stockholm University, Sweden.
  • Albrand S; The Oskar Klein Centre, Stockholm, Sweden.
  • Alconada Verzini MJ; Fysiska institutionen, Lunds universitet, Lund, Sweden.
  • Aleksa M; P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia.
  • Aleksandrov IN; INFN Sezione di Bologna, Italy.
  • Alexa C; Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy.
  • Alexander G; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada.
  • Alexopoulos T; Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France.
  • Alhroob M; Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina.
  • Alimonti G; CERN, Geneva, Switzerland.
  • Alio L; Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia.
  • Alison J; National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
  • Alkire SP; Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Allbrooke BM; Physics Department, National Technical University of Athens, Zografou, Greece.
  • Allport PP; Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA.
  • Aloisio A; INFN Sezione di Milano, Italy.
  • Alonso A; CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
  • Alonso F; Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA.
  • Alpigiani C; Nevis Laboratory, Columbia University, Irvington, New York, USA.
  • Altheimer A; Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom.
  • Alvarez Gonzalez B; School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom.
  • Álvarez Piqueras D; INFN Sezione di Napoli, Italy.
Phys Rev Lett ; 116(17): 172301, 2016 Apr 29.
Article en En | MEDLINE | ID: mdl-27176515
ABSTRACT
ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Δϕ, and pseudorapidity, Δη, in sqrt[s]=13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval |η|<2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Δϕ∼0 that extends over a wide range of Δη, which has been referred to as the "ridge." Per-trigger-particle yields, Y(Δϕ), are measured over 2<|Δη|<5. For both collision energies, the Y(Δϕ) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 20 reconstructed tracks, and a constant combinatoric contribution modulated by cos(2Δϕ). The fitted Fourier coefficient, v_{2,2}, exhibits factorization, suggesting that the ridge results from per-event cos(2ϕ) modulation of the single-particle distribution with Fourier coefficients v_{2}. The v_{2} values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p_{T} dependence similar to that measured in p+Pb and Pb+Pb collisions. The v_{2} values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p+Pb collisions, and that the dynamics responsible for the ridge has no strong sqrt[s] dependence.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2016 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2016 Tipo del documento: Article País de afiliación: Francia