Your browser doesn't support javascript.
loading
An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data.
Ping, Bo; Su, Fenzhen; Meng, Yunshan.
Afiliación
  • Ping B; School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China.
  • Su F; Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
  • Meng Y; Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
PLoS One ; 11(5): e0155928, 2016.
Article en En | MEDLINE | ID: mdl-27195692
In this study, an improved Data INterpolating Empirical Orthogonal Functions (DINEOF) algorithm for determination of missing values in a spatio-temporal dataset is presented. Compared with the ordinary DINEOF algorithm, the iterative reconstruction procedure until convergence based on every fixed EOF to determine the optimal EOF mode is not necessary and the convergence criterion is only reached once in the improved DINEOF algorithm. Moreover, in the ordinary DINEOF algorithm, after optimal EOF mode determination, the initial matrix with missing data will be iteratively reconstructed based on the optimal EOF mode until the reconstruction is convergent. However, the optimal EOF mode may be not the best EOF for some reconstructed matrices generated in the intermediate steps. Hence, instead of using asingle EOF to fill in the missing data, in the improved algorithm, the optimal EOFs for reconstruction are variable (because the optimal EOFs are variable, the improved algorithm is called VE-DINEOF algorithm in this study). To validate the accuracy of the VE-DINEOF algorithm, a sea surface temperature (SST) data set is reconstructed by using the DINEOF, I-DINEOF (proposed in 2015) and VE-DINEOF algorithms. Four parameters (Pearson correlation coefficient, signal-to-noise ratio, root-mean-square error, and mean absolute difference) are used as a measure of reconstructed accuracy. Compared with the DINEOF and I-DINEOF algorithms, the VE-DINEOF algorithm can significantly enhance the accuracy of reconstruction and shorten the computational time.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Temperatura / Algoritmos / Océanos y Mares Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Temperatura / Algoritmos / Océanos y Mares Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos