Your browser doesn't support javascript.
loading
Adult-Onset Deletion of ß-Catenin in (10kb)Dmp1-Expressing Cells Prevents Intermittent PTH-Induced Bone Gain.
Kedlaya, Rajendra; Kang, Kyung Shin; Hong, Jung Min; Bettagere, Vidya; Lim, Kyung-Eun; Horan, Daniel; Divieti-Pajevic, Paola; Robling, Alexander G.
Afiliación
  • Kedlaya R; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Kang KS; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Hong JM; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Bettagere V; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Lim KE; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Horan D; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Divieti-Pajevic P; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
  • Robling AG; Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of
Endocrinology ; 157(8): 3047-57, 2016 08.
Article en En | MEDLINE | ID: mdl-27253995
ABSTRACT
ß-Catenincat) is a major downstream signaling node in canonical Wingless-related integration site (Wnt) signaling pathway, and its activity is crucial for canonical Wnt signal transduction. Wnt signaling has recently been implicated in the osteo-anabolic response to PTH, a potent calcium-regulating factor. We investigated whether ßcat is essential for the anabolic action of intermittent PTH by generating male mice with adult-onset deletion of ßcat in a subpopulation of bone cells (osteocytes and late-stage osteoblasts), treating them with an anabolic regimen of PTH, and measuring the skeletal responses. Male (10kb)Dmp1-CreERt2 transgenic mice that also harbored floxed loss-of-function ßcat allelescat(f/f)) were induced for Cre activity using tamoxifen, then injected daily with human PTH 1-34 (30 µg/kg) or vehicle for 5 weeks. Mice in which ßcat was deleted showed either total lack of bone mineral density (BMD) gain, or BMD loss, and did not respond to PTH treatment. However, bone mass measurements in the trabecular compartment of the femur and spine revealed PTH-induced bone gain whether ßcat was deleted or not. PTH-stimulated increases in periosteal and cancellous bone formation rates were not impaired by ßcat deletion, but resorption markers and cortical porosity were significantly increased in induced mice, particularly induced mice treated with PTH. These results suggest that ßcat is required for net-positive BMD effects of PTH therapy but that the anabolic effects per se of PTH treatment might not require osteocytic/osteoblastic ßcat.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Hormona Paratiroidea / Proteínas de la Matriz Extracelular / Eliminación de Gen / Beta Catenina Límite: Animals Idioma: En Revista: Endocrinology Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Hormona Paratiroidea / Proteínas de la Matriz Extracelular / Eliminación de Gen / Beta Catenina Límite: Animals Idioma: En Revista: Endocrinology Año: 2016 Tipo del documento: Article
...