Your browser doesn't support javascript.
loading
Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations.
Folberth, Christian; Skalský, Rastislav; Moltchanova, Elena; Balkovic, Juraj; Azevedo, Ligia B; Obersteiner, Michael; van der Velde, Marijn.
Afiliación
  • Folberth C; Ecosystem Services and Management Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria.
  • Skalský R; Department of Geography, Ludwig Maximilian University, 80333 Munich, Germany.
  • Moltchanova E; Ecosystem Services and Management Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria.
  • Balkovic J; Soil Science and Conservation Research Institute, National Agricultural and Food Centre, 82713 Bratislava, Slovak Republic.
  • Azevedo LB; Ecosystem Services and Management Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria.
  • Obersteiner M; School of Mathematics and Statistics, University of Canterbury, Christchurch 8140, New Zealand.
  • van der Velde M; Ecosystem Services and Management Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria.
Nat Commun ; 7: 11872, 2016 06 21.
Article en En | MEDLINE | ID: mdl-27323866
Global gridded crop models (GGCMs) are increasingly used for agro-environmental assessments and estimates of climate change impacts on food production. Recently, the influence of climate data and weather variability on GGCM outcomes has come under detailed scrutiny, unlike the influence of soil data. Here we compare yield variability caused by the soil type selected for GGCM simulations to weather-induced yield variability. Without fertilizer application, soil-type-related yield variability generally outweighs the simulated inter-annual variability in yield due to weather. Increasing applications of fertilizer and irrigation reduce this variability until it is practically negligible. Importantly, estimated climate change effects on yield can be either negative or positive depending on the chosen soil type. Soils thus have the capacity to either buffer or amplify these impacts. Our findings call for improvements in soil data available for crop modelling and more explicit accounting for soil variability in GGCM simulations.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2016 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2016 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Reino Unido