Your browser doesn't support javascript.
loading
Stromal Cell-Derived Factor 2: A Novel Protein that Interferes in Endoplasmic Reticulum Stress Pathway in Human Placental Cells.
Lorenzon-Ojea, Aline R; Guzzo, Cristiane R; Kapidzic, Mirhan; Fisher, Susan J; Bevilacqua, Estela.
Afiliación
  • Lorenzon-Ojea AR; Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California San Francisco, San Francisco, California.
  • Guzzo CR; Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
  • Kapidzic M; Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California San Francisco, San Francisco, California.
  • Fisher SJ; Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California San Francisco, San Francisco, California.
  • Bevilacqua E; Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil bevilacq@usp.br.
Biol Reprod ; 95(2): 41, 2016 08.
Article en En | MEDLINE | ID: mdl-27335075
ABSTRACT
Endoplasmic reticulum (ER) stress results from changes in ER homeostasis and folding of proteins. ER stress initiates cellular adaptive mechanisms to rescue cell homeostasis or, if that does not work, to elicit apoptosis. We have previously shown that mouse SDF2 is sublocalized in the ER, is ubiquitously expressed, and shows strong similarities with stromal cell-derived factor (SDF) 2L1 and SDF2-like from Arabidopsis, ER proteins involved in chaperone network and protein folding. Thus, we hypothesized that SDF2 plays a role in the ER stress and unfolded protein response. In this study, we investigated the possible role of SDF2 in the human placenta. Expression of SDF2 was present throughout gestation and was expressed by several cell types. Second-trimester cytotrophoblast cells (CTBs) in the differentiation process, monitored through chorionic gonadotropin production, showed upregulation of SDF2 protein. SDF2 expression, however, was significantly diminished in placentas from neonates small for gestational age and in hypoxic in vitro conditions (P ≤ 0.001, 2% O2), suggesting a link with cellular stress. ER stress-induced cells-CTB and BeWo-also showed SDF2 downregulation in different time points, emphasizing this relationship. SDF2 downregulation was also followed by an increase in binding immunoglobulin protein (BiP) expression, an ER protein-associated chaperone acting as a sensor for misfolded proteins and an ER stress cell survival marker. In line with this, SDF2 siRNA resulted in significant anticipation of BiP expression. Downregulation of SDF2 also interfered with C/EBP homologous protein expression, one of the highest inducible genes during ER stress. These findings suggest that SDF2 may be an important regulatory factor by which trophoblast cells can control cell survival under ER stress. In conclusion, this study identifies a novel factor with the ability to interfere with ER stress proteins, which may contribute to the understanding of ER stress associated with placental-related diseases of pregnancy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Placenta / Trofoblastos / Proteínas / Estrés del Retículo Endoplásmico Tipo de estudio: Prognostic_studies Límite: Female / Humans / Pregnancy Idioma: En Revista: Biol Reprod Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Placenta / Trofoblastos / Proteínas / Estrés del Retículo Endoplásmico Tipo de estudio: Prognostic_studies Límite: Female / Humans / Pregnancy Idioma: En Revista: Biol Reprod Año: 2016 Tipo del documento: Article