Your browser doesn't support javascript.
loading
Feasibility of Population Health Analytics and Data Visualization for Decision Support in the Infectious Diseases Domain: A pilot study.
Roosan, Don; Del Fiol, Guilherme; Butler, Jorie; Livnat, Yarden; Mayer, Jeanmarie; Samore, Matthew; Jones, Makoto; Weir, Charlene.
Afiliación
  • Roosan D; Department of Biomedical Informatics, University of Utah , 421 Wakara Way, Salt Lake City, UT 84108, USA.
  • Del Fiol G; Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Salt Lake City, UT 84108, USA; IDEAS Center for Innovation, VA Salt Lake City Health System, 500 Foothill Drive, Salt Lake City, UT 84108, USA.
  • Butler J; IDEAS Center for Innovation, VA Salt Lake City Health System , 500 Foothill Drive, Salt Lake City, UT 84108, USA.
  • Livnat Y; Scientific Computing and Imaging Institute, Department of Computer Sciences, University of Utah , 72 S Central Campus Dr, Salt Lake City, UT 84112, USA.
  • Mayer J; IDEAS Center for Innovation, VA Salt Lake City Health System , 500 Foothill Drive, Salt Lake City, UT 84108, USA.
  • Samore M; Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Salt Lake City, UT 84108, USA; IDEAS Center for Innovation, VA Salt Lake City Health System, 500 Foothill Drive, Salt Lake City, UT 84108, USA.
  • Jones M; IDEAS Center for Innovation, VA Salt Lake City Health System , 500 Foothill Drive, Salt Lake City, UT 84108, USA.
  • Weir C; Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Salt Lake City, UT 84108, USA; IDEAS Center for Innovation, VA Salt Lake City Health System, 500 Foothill Drive, Salt Lake City, UT 84108, USA.
Appl Clin Inform ; 7(2): 604-23, 2016.
Article en En | MEDLINE | ID: mdl-27437065
OBJECTIVE: Big data or population-based information has the potential to reduce uncertainty in medicine by informing clinicians about individual patient care. The objectives of this study were: 1) to explore the feasibility of extracting and displaying population-based information from an actual clinical population's database records, 2) to explore specific design features for improving population display, 3) to explore perceptions of population information displays, and 4) to explore the impact of population information display on cognitive outcomes. METHODS: We used the Veteran's Affairs (VA) database to identify similar complex patients based on a similar complex patient case. Study outcomes measures were 1) preferences for population information display 2) time looking at the population display, 3) time to read the chart, and 4) appropriateness of plans with pre- and post-presentation of population data. Finally, we redesigned the population information display based on our findings from this study. RESULTS: The qualitative data analysis for preferences of population information display resulted in four themes: 1) trusting the big/population data can be an issue, 2) embedded analytics is necessary to explore patient similarities, 3) need for tools to control the view (overview, zoom and filter), and 4) different presentations of the population display can be beneficial to improve the display. We found that appropriateness of plans was at 60% for both groups (t9=-1.9; p=0.08), and overall time looking at the population information display was 2.3 minutes versus 3.6 minutes with experts processing information faster than non-experts (t8= -2.3, p=0.04). CONCLUSION: A population database has great potential for reducing complexity and uncertainty in medicine to improve clinical care. The preferences identified for the population information display will guide future health information technology system designers for better and more intuitive display.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Presentación de Datos / Salud Pública / Enfermedades Transmisibles / Sistemas de Apoyo a Decisiones Clínicas Tipo de estudio: Prognostic_studies / Qualitative_research Aspecto: Determinantes_sociais_saude Límite: Humans Idioma: En Revista: Appl Clin Inform Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Presentación de Datos / Salud Pública / Enfermedades Transmisibles / Sistemas de Apoyo a Decisiones Clínicas Tipo de estudio: Prognostic_studies / Qualitative_research Aspecto: Determinantes_sociais_saude Límite: Humans Idioma: En Revista: Appl Clin Inform Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania