Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression.
J Cell Sci
; 129(19): 3541-3552, 2016 10 01.
Article
en En
| MEDLINE
| ID: mdl-27528402
The heat shock response is a conserved defense mechanism that protects cells from physiological stress, including thermal stress. Besides the activation of heat-shock-protein genes, the heat shock response is also known to bring about global suppression of transcription; however, the mechanism by which this occurs is poorly understood. One of the intriguing aspects of the heat shock response in human cells is the transcription of satellite-III (Sat3) long non-coding RNAs and their association with nuclear stress bodies (nSBs) of unknown function. Besides association with the Sat3 transcript, the nSBs are also known to recruit the transcription factors HSF1 and CREBBP, and several RNA-binding proteins, including the splicing factor SRSF1. We demonstrate here that the recruitment of CREBBP and SRSF1 to nSBs is Sat3-dependent, and that loss of Sat3 transcripts relieves the heat-shock-induced transcriptional repression of a few target genes. Conversely, forced expression of Sat3 transcripts results in the formation of nSBs and transcriptional repression even without a heat shock. Our results thus provide a novel insight into the regulatory role for the Sat3 transcripts in heat-shock-dependent transcriptional repression.
Palabras clave
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Transcripción Genética
/
Respuesta al Choque Térmico
/
ARN no Traducido
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
J Cell Sci
Año:
2016
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Reino Unido