Your browser doesn't support javascript.
loading
Missing gene identification using functional coherence scores.
Chitale, Meghana; Khan, Ishita K; Kihara, Daisuke.
Afiliación
  • Chitale M; Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.
  • Khan IK; Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.
  • Kihara D; Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.
Sci Rep ; 6: 31725, 2016 08 24.
Article en En | MEDLINE | ID: mdl-27552989
Reconstructing metabolic and signaling pathways is an effective way of interpreting a genome sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily found, reflecting current imperfect information of the target organism. In this work, we developed a new method for finding missing genes, which integrates multiple features, including gene expression, phylogenetic profile, and function association scores. Particularly, for considering function association between candidate genes and neighboring proteins to the target missing gene in the network, we used Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which are designed for capturing functional coherence of proteins. We showed that adding CAS and PAS substantially improve the accuracy of identifying missing genes in the yeast enzyme-enzyme network compared to the cases when only the conventional features, gene expression, phylogenetic profile, were used. Finally, it was also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme position in the network using a proper network-topology-based weighting scheme.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Regulación Fúngica de la Expresión Génica / Biología Computacional / Perfilación de la Expresión Génica / Genómica / Redes Reguladoras de Genes Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Regulación Fúngica de la Expresión Génica / Biología Computacional / Perfilación de la Expresión Génica / Genómica / Redes Reguladoras de Genes Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido