Your browser doesn't support javascript.
loading
The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering.
Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A; Janeczek, Agnieszka A; Kontouli, Nasia; Kanczler, Janos M; Evans, Nicholas D; Oreffo, Richard Oc.
Afiliación
  • Moreno-Jiménez I; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Hulsart-Billstrom G; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Lanham SA; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Janeczek AA; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Kontouli N; Cancer Sciences Unit, Somers Cancer Research, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Kanczler JM; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Evans ND; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
  • Oreffo RO; Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
Sci Rep ; 6: 32168, 2016 08 31.
Article en En | MEDLINE | ID: mdl-27577960
ABSTRACT
Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (µCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by µCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bioensayo / Regeneración Ósea / Ingeniería de Tejidos / Membrana Corioalantoides / Fémur / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bioensayo / Regeneración Ósea / Ingeniería de Tejidos / Membrana Corioalantoides / Fémur / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Reino Unido