Your browser doesn't support javascript.
loading
Assessing electronic health record phenotypes against gold-standard diagnostic criteria for diabetes mellitus.
Spratt, Susan E; Pereira, Katherine; Granger, Bradi B; Batch, Bryan C; Phelan, Matthew; Pencina, Michael; Miranda, Marie Lynn; Boulware, Ebony; Lucas, Joseph E; Nelson, Charlotte L; Neely, Benjamin; Goldstein, Benjamin A; Barth, Pamela; Richesson, Rachel L; Riley, Isaretta L; Corsino, Leonor; McPeek Hinz, Eugenia R; Rusincovitch, Shelley; Green, Jennifer; Barton, Anna Beth; Kelley, Carly; Hyland, Kristen; Tang, Monica; Elliott, Amanda; Ruel, Ewa; Clark, Alexander; Mabrey, Melanie; Morrissey, Kay Lyn; Rao, Jyothi; Hong, Beatrice; Pierre-Louis, Marjorie; Kelly, Katherine; Jelesoff, Nicole.
Afiliación
  • Spratt SE; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
  • Pereira K; Duke University School of Nursing, Durham, NC, USA.
  • Granger BB; Duke University School of Nursing, Durham, NC, USA.
  • Batch BC; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
  • Phelan M; Duke Clinical Research Institute, Durham, NC, USA.
  • Pencina M; Duke Clinical Research Institute, Durham, NC, USA.
  • Miranda ML; Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
  • Boulware E; Rice University and Baylor College of Medicine, Houston, TX, USA.
  • Lucas JE; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
  • Nelson CL; Department of Statistical Science, Duke University, Durham, NC, USA.
  • Neely B; Duke Clinical Research Institute, Durham, NC, USA.
  • Goldstein BA; Duke Clinical Research Institute, Durham, NC, USA.
  • Barth P; Duke Clinical Research Institute, Durham, NC, USA.
  • Richesson RL; Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
  • Riley IL; Duke Translational Medicine Institute, Durham, NC, USA.
  • Corsino L; Duke University School of Nursing, Durham, NC, USA.
  • McPeek Hinz ER; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
  • Rusincovitch S; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
  • Green J; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
  • Barton AB; Duke Translational Medicine Institute, Durham, NC, USA.
  • Kelley C; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
J Am Med Inform Assoc ; 24(e1): e121-e128, 2017 Apr 01.
Article en En | MEDLINE | ID: mdl-27616701
OBJECTIVE: We assessed the sensitivity and specificity of 8 electronic health record (EHR)-based phenotypes for diabetes mellitus against gold-standard American Diabetes Association (ADA) diagnostic criteria via chart review by clinical experts. MATERIALS AND METHODS: We identified EHR-based diabetes phenotype definitions that were developed for various purposes by a variety of users, including academic medical centers, Medicare, the New York City Health Department, and pharmacy benefit managers. We applied these definitions to a sample of 173 503 patients with records in the Duke Health System Enterprise Data Warehouse and at least 1 visit over a 5-year period (2007-2011). Of these patients, 22 679 (13%) met the criteria of 1 or more of the selected diabetes phenotype definitions. A statistically balanced sample of these patients was selected for chart review by clinical experts to determine the presence or absence of type 2 diabetes in the sample. RESULTS: The sensitivity (62-94%) and specificity (95-99%) of EHR-based type 2 diabetes phenotypes (compared with the gold standard ADA criteria via chart review) varied depending on the component criteria and timing of observations and measurements. DISCUSSION AND CONCLUSIONS: Researchers using EHR-based phenotype definitions should clearly specify the characteristics that comprise the definition, variations of ADA criteria, and how different phenotype definitions and components impact the patient populations retrieved and the intended application. Careful attention to phenotype definitions is critical if the promise of leveraging EHR data to improve individual and population health is to be fulfilled.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diabetes Mellitus / Registros Electrónicos de Salud Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido