Your browser doesn't support javascript.
loading
Radiation endurance in Al2O3 nanoceramics.
García Ferré, F; Mairov, A; Ceseracciu, L; Serruys, Y; Trocellier, P; Baumier, C; Kaïtasov, O; Brescia, R; Gastaldi, D; Vena, P; Beghi, M G; Beck, L; Sridharan, K; Di Fonzo, F.
Afiliación
  • García Ferré F; Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (MI), Italia.
  • Mairov A; Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, 53715 Wisconsin (WI), USA.
  • Ceseracciu L; Smart Materials, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (GE), Italia.
  • Serruys Y; Laboratoire JANNUS, DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris Saclay, F-91191 Gif-Sur-Yvette, France.
  • Trocellier P; Laboratoire JANNUS, DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris Saclay, F-91191 Gif-Sur-Yvette, France.
  • Baumier C; CNRS/IN2P3/CSNSM/SEMIRAMIS/JANNUS-Orsay, Université Paris Sud, Bat. 108, 91400 Orsay, France.
  • Kaïtasov O; CNRS/IN2P3/CSNSM/SEMIRAMIS/JANNUS-Orsay, Université Paris Sud, Bat. 108, 91400 Orsay, France.
  • Brescia R; Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (GE), Italia.
  • Gastaldi D; Dipartimento di Chimica, Materiali ed Ingegneria dei Materiali, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (MI), Italia.
  • Vena P; Dipartimento di Chimica, Materiali ed Ingegneria dei Materiali, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (MI), Italia.
  • Beghi MG; Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (MI), Italia.
  • Beck L; Laboratoire JANNUS, DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris Saclay, F-91191 Gif-Sur-Yvette, France.
  • Sridharan K; Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, 53715 Wisconsin (WI), USA.
  • Di Fonzo F; Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (MI), Italia.
Sci Rep ; 6: 33478, 2016 Sep 22.
Article en En | MEDLINE | ID: mdl-27653832
The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C -namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido