Your browser doesn't support javascript.
loading
Metabolism of methiocarb and carbaryl by rat and human livers and plasma, and effect on their PXR, CAR and PPARα activities.
Fujino, Chieri; Tamura, Yuki; Tange, Satoko; Nakajima, Hiroyuki; Sanoh, Seigo; Watanabe, Yoko; Uramaru, Naoto; Kojima, Hiroyuki; Yoshinari, Kouichi; Ohta, Shigeru; Kitamura, Shigeyuki.
Afiliación
  • Fujino C; Graduate School of Biomedical and Health Sciences, Hiroshima University.
J Toxicol Sci ; 41(5): 677-91, 2016.
Article en En | MEDLINE | ID: mdl-27665777
ABSTRACT
The oxidative, reductive, and hydrolytic metabolism of methiocarb and the hydrolytic metabolism of carbaryl by liver microsomes and plasma of rats or humans were examined. The effects of the metabolism of methiocarb and carbaryl on their nuclear receptor activities were also examined. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sulfoxide, and a novel metabolite, methiocarb sulfone were detected. Methiocarb sulfoxide was oxidized to the sulfone by liver microsomes and reduced back to methiocarb by liver cytosol. Thus, the interconversion between methiocarb and the sulfoxide was found to be a new metabolic pathway for methiocarb by liver microsomes. The product of methiocarb hydrolysis, which is methylthio-3,5-xylenol (MX), was also oxidized to sulfoxide form by rat liver microsomes. The oxidations were catalyzed by human flavin-containing monooxygenase isoform (FMO1). CYP2C19, which is a human cytochrome P450 (CYP) isoform, catalyzed the sulfoxidations of methiocarb and MX, while CYP1A2 also exhibited oxidase activity toward MX. Methiocarb and carbaryl were not enzymatically hydrolyzed by the liver microsomes, but they were mainly hydrolyzed by plasma and albumin to MX and 1-naphthol, respectively. Both methiocarb and carbaryl exhibited PXR and PPARα agonistic activities; however, methiocarb sulfoxide and sulfone showed markedly reduced activities. In fact, when methiocarb was incubated with liver microsomes, the receptor activities were decreased. In contrast, MX and 1-naphthol showed nuclear receptor activities equivalent to those of their parent carbamates. Thus, the hydrolysis of methiocarb and carbaryl and the oxidation of methiocarb markedly modified their nuclear receptor activities.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Esteroides / Inhibidores de la Colinesterasa / Carbaril / Receptores Citoplasmáticos y Nucleares / PPAR alfa / Hígado / Metiocarb Límite: Animals / Humans / Male Idioma: En Revista: J Toxicol Sci Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Esteroides / Inhibidores de la Colinesterasa / Carbaril / Receptores Citoplasmáticos y Nucleares / PPAR alfa / Hígado / Metiocarb Límite: Animals / Humans / Male Idioma: En Revista: J Toxicol Sci Año: 2016 Tipo del documento: Article