Your browser doesn't support javascript.
loading
"Rocking-Chair"-Type Metal Hybrid Supercapacitors.
Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D; Gewirth, Andrew A; Genorio, Bostjan; Rajput, Nav Nidhi; Persson, Kristin A; Burrell, Anthony K; Cabana, Jordi.
Afiliación
  • Yoo HD; Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States.
  • Han SD; Joint Center for Energy Storage Research, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Bayliss RD; Joint Center for Energy Storage Research, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Gewirth AA; Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Genorio B; Department of Chemistry, University of Illinois at Chicago , Chicago, Illinois 60607, United States.
  • Rajput NN; Joint Center for Energy Storage Research, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Persson KA; Joint Center for Energy Storage Research, Argonne National Laboratory , Argonne, Illinois 60439, United States.
  • Burrell AK; Department of Chemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States.
  • Cabana J; Joint Center for Energy Storage Research, Argonne National Laboratory , Argonne, Illinois 60439, United States.
ACS Appl Mater Interfaces ; 8(45): 30853-30862, 2016 Nov 16.
Article en En | MEDLINE | ID: mdl-27775318
Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.
Palabras clave
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos