Your browser doesn't support javascript.
loading
Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin.
Guareschi, Riccardo; Valsson, Omar; Curutchet, Carles; Mennucci, Benedetta; Filippi, Claudia.
Afiliación
  • Guareschi R; MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands.
  • Valsson O; Department of Chemistry and Applied Bioscience, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera italiana , Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland.
  • Curutchet C; Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII, s/n 08028 Barcelona, Spain.
  • Mennucci B; Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
  • Filippi C; MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands.
J Phys Chem Lett ; 7(22): 4547-4553, 2016 Nov 17.
Article en En | MEDLINE | ID: mdl-27786481
Light sensing in photoreceptor proteins is subtly modulated by the multiple interactions between the chromophoric unit and its binding pocket. Many theoretical and experimental studies have tried to uncover the fundamental origin of these interactions but reached contradictory conclusions as to whether electrostatics, polarization, or intrinsically quantum effects prevail. Here, we select rhodopsin as a prototypical photoreceptor system to reveal the molecular mechanism underlying these interactions and regulating the spectral tuning. Combining a multireference perturbation method and density functional theory with a classical but atomistic and polarizable embedding scheme, we show that accounting for electrostatics only leads to a qualitatively wrong picture, while a responsive environment can successfully capture both the classical and quantum dominant effects. Several residues are found to tune the excitation by both differentially stabilizing ground and excited states and through nonclassical "inductive resonance" interactions. The results obtained with such a quantum-in-classical model are validated against both experimental data and fully quantum calculations.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teoría Cuántica / Rodopsina / Modelos Moleculares Idioma: En Revista: J Phys Chem Lett Año: 2016 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teoría Cuántica / Rodopsina / Modelos Moleculares Idioma: En Revista: J Phys Chem Lett Año: 2016 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos