Your browser doesn't support javascript.
loading
Nanoscale Pillar-Enhanced Tribological Surfaces as Antifouling Membranes.
Choi, Wansuk; Chan, Edwin P; Park, Jong-Hyun; Ahn, Won-Gi; Jung, Hyun Wook; Hong, Seungkwan; Lee, Jong Suk; Han, Ji-Young; Park, Sangpil; Ko, Doo-Hyun; Lee, Jung-Hyun.
Afiliación
  • Choi W; Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
  • Chan EP; Materials Science and Engineering Division, The National Institute of Standards and Technology (NIST) , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.
  • Park JH; Department of Chemistry, Korea University , 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
  • Ahn WG; Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
  • Jung HW; Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
  • Hong S; School of Civil, Environmental and Architectural Engineering, Korea University , 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
  • Lee JS; Department of Chemical and Biomolecular Engineering, Sogang University , 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
  • Han JY; Department of Applied Chemistry, Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
  • Park S; Department of Applied Chemistry, Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
  • Ko DH; Department of Applied Chemistry, Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
  • Lee JH; Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
ACS Appl Mater Interfaces ; 8(45): 31433-31441, 2016 Nov 16.
Article en En | MEDLINE | ID: mdl-27802010
We present a nonconventional membrane surface modification approach that utilizes surface topography to manipulate the tribology of foulant accumulation on water desalination membranes via imprinting of submicron titanium dioxide (TiO2) pillar patterns onto the molecularly structured, flat membrane surface. This versatile approach overcomes the constraint of the conventional approach relying on interfacial polymerization that inevitably leads to the formation of ill-defined surface topography. Compared to the nonpatterned membranes, the patterned membranes showed significantly improved fouling resistance for both organic protein and bacterial foulants. The use of hydrophilic TiO2 as a pattern material increases the membrane hydrophilicity, imparting improved chemical antifouling resistance to the membrane. Fouling behavior was also interpreted in terms of the topographical effect depending on the relative size of foulants to the pattern dimension. In addition, computational fluid dynamics simulation suggests that the enhanced antifouling of the patterned membrane is attributed to the enhancement in overall and local shear stress at the fluid-TiO2 pattern interface.
Palabras clave
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2016 Tipo del documento: Article Pais de publicación: Estados Unidos