Your browser doesn't support javascript.
loading
Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints.
Yeh, Fang-Cheng; Vettel, Jean M; Singh, Aarti; Poczos, Barnabas; Grafton, Scott T; Erickson, Kirk I; Tseng, Wen-Yih I; Verstynen, Timothy D.
Afiliación
  • Yeh FC; Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
  • Vettel JM; U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland, United States of America.
  • Singh A; Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.
  • Poczos B; University of Pennsylvania, Department of Bioengineering, Philadelphia, PA, United States of America.
  • Grafton ST; Department of Machine Learning, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
  • Erickson KI; Department of Machine Learning, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
  • Tseng WI; Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America.
  • Verstynen TD; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania United States of America.
PLoS Comput Biol ; 12(11): e1005203, 2016 Nov.
Article en En | MEDLINE | ID: mdl-27846212
ABSTRACT
Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213), we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Interpretación de Imagen Asistida por Computador / Técnica de Sustracción / Imagen de Difusión Tensora / Conectoma / Sustancia Blanca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Interpretación de Imagen Asistida por Computador / Técnica de Sustracción / Imagen de Difusión Tensora / Conectoma / Sustancia Blanca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos