Your browser doesn't support javascript.
loading
CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase.
Bürstel, Ingmar; Siebert, Elisabeth; Frielingsdorf, Stefan; Zebger, Ingo; Friedrich, Bärbel; Lenz, Oliver.
Afiliación
  • Bürstel I; Department of Biology, Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
  • Siebert E; Department of Chemistry, Biophysical Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
  • Frielingsdorf S; Department of Chemistry, Biophysical Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
  • Zebger I; Department of Biology, Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
  • Friedrich B; Department of Chemistry, Biophysical Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
  • Lenz O; Department of Chemistry, Biophysical Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
Proc Natl Acad Sci U S A ; 113(51): 14722-14726, 2016 12 20.
Article en En | MEDLINE | ID: mdl-27930319
ABSTRACT
Hydrogenases are nature's key catalysts involved in both microbial consumption and production of molecular hydrogen. H2 exhibits a strongly bonded, almost inert electron pair and requires transition metals for activation. Consequently, all hydrogenases are metalloenzymes that contain at least one iron atom in the catalytic center. For appropriate interaction with H2, the iron moiety demands for a sophisticated coordination environment that cannot be provided just by standard amino acids. This dilemma has been overcome by the introduction of unprecedented chemistry-that is, by ligating the iron with carbon monoxide (CO) and cyanide (or equivalent) groups. These ligands are both unprecedented in microbial metabolism and, in their free form, highly toxic to living organisms. Therefore, the formation of the diatomic ligands relies on dedicated biosynthesis pathways. So far, biosynthesis of the CO ligand in [NiFe]-hydrogenases was unknown. Here we show that the aerobic H2 oxidizer Ralstonia eutropha, which produces active [NiFe]-hydrogenases in the presence of O2, employs the auxiliary protein HypX (hydrogenase pleiotropic maturation X) for CO ligand formation. Using genetic engineering and isotope labeling experiments in combination with infrared spectroscopic investigations, we demonstrate that the α-carbon of glycine ends up in the CO ligand of [NiFe]-hydrogenase. The α-carbon of glycine is a building block of the central one-carbon metabolism intermediate, N10-formyl-tetrahydrofolate (N10-CHO-THF). Evidence is presented that the multidomain protein, HypX, converts the formyl group of N10-CHO-THF into water and CO, thereby providing the carbonyl ligand for hydrogenase. This study contributes insights into microbial biosynthesis of metal carbonyls involving toxic intermediates.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbono / Monóxido de Carbono / Hidrogenasas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbono / Monóxido de Carbono / Hidrogenasas Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA