Your browser doesn't support javascript.
loading
Global vision of druggability issues: applications and perspectives.
Abi Hussein, Hiba; Geneix, Colette; Petitjean, Michel; Borrel, Alexandre; Flatters, Delphine; Camproux, Anne-Claude.
Afiliación
  • Abi Hussein H; Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France. Electronic address: hiba.abihussein@univ-paris-diderot.fr.
  • Geneix C; Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France.
  • Petitjean M; Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France.
  • Borrel A; Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland.
  • Flatters D; Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France.
  • Camproux AC; Molécules Thérapeutiques in silico (MTi), Inserm UMR-S 973, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France. Electronic address: anne-claude.camproux@univ-paris-diderot.fr.
Drug Discov Today ; 22(2): 404-415, 2017 02.
Article en En | MEDLINE | ID: mdl-27939283
During the preliminary stage of a drug discovery project, the lack of druggability information and poor target selection are the main causes of frequent failures. Elaborating on accurate computational druggability prediction methods is a requirement for prioritizing target selection, designing new drugs and avoiding side effects. In this review, we describe a survey of recently reported druggability prediction methods mainly based on networks, statistical pocket druggability predictions and virtual screening. An application for a frequent mutation of p53 tumor suppressor is presented, illustrating the complementarity of druggability prediction approaches, the remaining challenges and potential new drug development perspectives.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Drug Discov Today Asunto de la revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Año: 2017 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Drug Discov Today Asunto de la revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Año: 2017 Tipo del documento: Article Pais de publicación: Reino Unido