Your browser doesn't support javascript.
loading
Predicting hydrophobic solvation by molecular simulation: 1. Testing united-atom alkane models.
Jorge, Miguel; Garrido, Nuno M; Simões, Carlos J V; Silva, Cândida G; Brito, Rui M M.
Afiliación
  • Jorge M; Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, United Kingdom.
  • Garrido NM; LSRE - Laboratory of Separation and Reaction Engineering - Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal.
  • Simões CJ; Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra, 3004-535, Portugal.
  • Silva CG; BSIM2 - Drug Discovery, Parque Tecnológico de Cantanhede, Cantanhede, 3060-197, Portugal.
  • Brito RM; Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, Coimbra, 3004-535, Portugal.
J Comput Chem ; 38(6): 346-358, 2017 03 05.
Article en En | MEDLINE | ID: mdl-28032384
ABSTRACT
We present a systematic test of the performance of three popular united-atom force fields-OPLS-UA, GROMOS and TraPPE-at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united-atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the magnitude of solvation free energies by about 6% (RMSD of 1.2 kJ/mol). Conversely, both GROMOS and OPLS-UA systematically overpredict solvation free energies (by ∼13% and 15%, respectively). The systematic trends suggest that all models can be improved by a slight adjustment of their Lennard-Jones parameters. © 2016 Wiley Periodicals, Inc.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido