Your browser doesn't support javascript.
loading
Quantifying the Risks of Asparagine Deamidation and Aspartate Isomerization in Biopharmaceuticals by Computing Reaction Free-Energy Surfaces.
Plotnikov, Nikolay V; Singh, Satish Kumar; Rouse, Jason C; Kumar, Sandeep.
Afiliación
  • Plotnikov NV; Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc. , 700 Chesterfield Pkwy West, Chesterfield, Missouri 63017, United States.
  • Singh SK; Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc. , 700 Chesterfield Pkwy West, Chesterfield, Missouri 63017, United States.
  • Rouse JC; Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc. , 1 Burtt Road, Andover, Massachusetts 01810, United States.
  • Kumar S; Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc. , 700 Chesterfield Pkwy West, Chesterfield, Missouri 63017, United States.
J Phys Chem B ; 121(4): 719-730, 2017 02 02.
Article en En | MEDLINE | ID: mdl-28051868
ABSTRACT
Early identification of asparagine deamidation and aspartate isomerization degradation sites can facilitate the successful development of biopharmaceuticals. Several knowledge-based models have been proposed to assess these degradation risks. In this study, we propose a physics-based approach to identify the degradation sites on the basis of the free-energy barriers along the prechemical conformational step and the chemical reaction pathway. These contributions are estimated from classical and quantum mechanics/molecular mechanics molecular dynamics simulations. The computed barriers are compared to those for reference reactions in water within GNG and GDG sequence motifs in peptides (which demonstrate the highest degradation rates). Two major factors decreasing the degradation rates relative to the reference reactions are steric hindrance toward accessing reactive conformations and replacement of water by less polar side chains in the solvation shell of transition states. Among the potential degradation sites in the complementarity-determining region of trastuzumab and between two DK sites in glial cell-derived neurotropic factor, this method identified N30T, N55G, D102G, and D95K, respectively, in agreement with experiments. This approach can be incorporated in early computational screening of chemical degradation sites in biopharmaceuticals.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Asparagina / Termodinámica / Simulación de Dinámica Molecular / Amidas Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Asparagina / Termodinámica / Simulación de Dinámica Molecular / Amidas Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos