Your browser doesn't support javascript.
loading
Human ß-defensin-2 production from S. cerevisiae using the repressible MET17 promoter.
Møller, Thea S B; Hay, Joanna; Saxton, Malcolm J; Bunting, Karen; Petersen, Evamaria I; Kjærulff, Søren; Finnis, Christopher J A.
Afiliación
  • Møller TS; Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
  • Hay J; Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark.
  • Saxton MJ; Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
  • Bunting K; Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
  • Petersen EI; Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
  • Kjærulff S; Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark.
  • Finnis CJ; Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
Microb Cell Fact ; 16(1): 11, 2017 Jan 18.
Article en En | MEDLINE | ID: mdl-28100236
ABSTRACT

BACKGROUND:

Baker's yeast Saccharomyces cerevisiae is a proven host for the commercial production of recombinant biopharmaceutical proteins. For the manufacture of heterologous proteins with activities deleterious to the host it can be desirable to minimise production during the growth phase and induce production late in the exponential phase. Protein expression by regulated promoter systems offers the possibility of improving productivity in this way by separating the recombinant protein production phase from the yeast growth phase. Commonly used inducible promoters do not always offer convenient solutions for industrial scale biopharmaceutical production with engineered yeast systems.

RESULTS:

Here we show improved secretion of the antimicrobial protein, human ß-defensin-2, (hBD2), using the S. cerevisiae MET17 promoter by repressing expression during the growth phase. In shake flask culture, a higher final concentration of human ß-defensin-2 was obtained using the repressible MET17 promoter system than when using the strong constitutive promoter from proteinase B (PRB1) in a yeast strain developed for high-level commercial production of recombinant proteins. Furthermore, this was achieved in under half the time using the MET17 promoter compared to the PRB1 promoter. Cell density, plasmid copy-number, transcript level and protein concentration in the culture supernatant were used to study the effects of different initial methionine concentrations in the culture media for the production of human ß-defensin-2 secreted from S. cerevisiae.

CONCLUSIONS:

The repressible S. cerevisiae MET17 promoter was more efficient than a strong constitutive promoter for the production of human ß-defensin-2 from S. cerevisiae in small-scale culture and offers advantages for the commercial production of this and other heterologous proteins which are deleterious to the host organism. Furthermore, the MET17 promoter activity can be modulated by methionine alone, which has a safety profile applicable to biopharmaceutical manufacturing.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Regulación Fúngica de la Expresión Génica / Regiones Promotoras Genéticas / Beta-Defensinas / Cisteína Sintasa / Proteínas de Saccharomyces cerevisiae Límite: Humans Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Regulación Fúngica de la Expresión Génica / Regiones Promotoras Genéticas / Beta-Defensinas / Cisteína Sintasa / Proteínas de Saccharomyces cerevisiae Límite: Humans Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido