Your browser doesn't support javascript.
loading
Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter.
Jones, Rhys Jon; Massanet-Nicolau, Jaime; Mulder, Martijn J J; Premier, Giuliano; Dinsdale, Richard; Guwy, Alan.
Afiliación
  • Jones RJ; Sustainable Environment Research Centre, Faculty of Computing Engineering and Science, University of South Wales, Pontypridd CF37 1DL, United Kingdom. Electronic address: rhys.jones@southwales.ac.uk.
  • Massanet-Nicolau J; Sustainable Environment Research Centre, Faculty of Computing Engineering and Science, University of South Wales, Pontypridd CF37 1DL, United Kingdom.
  • Mulder MJ; HyET Hydrogen Efficiency Technologies B.V., Leemansweg 15, 6827 BX Arnhem, The Netherlands.
  • Premier G; Sustainable Environment Research Centre, Faculty of Computing Engineering and Science, University of South Wales, Pontypridd CF37 1DL, United Kingdom.
  • Dinsdale R; Sustainable Environment Research Centre, Faculty of Computing Engineering and Science, University of South Wales, Pontypridd CF37 1DL, United Kingdom.
  • Guwy A; Sustainable Environment Research Centre, Faculty of Computing Engineering and Science, University of South Wales, Pontypridd CF37 1DL, United Kingdom.
Bioresour Technol ; 229: 46-52, 2017 Apr.
Article en En | MEDLINE | ID: mdl-28107721
ABSTRACT
Electrodialysis (ED) removed volatile fatty acids (VFAs) from a continually-fed, hydrogen-producing fermenter. Simultaneously, electrochemical removal and adsorption removed gaseous H2 and CO2, respectively. Removing VFAs via ED in this novel process increased H2 yields by a factor of 3.75 from 0.24molH2mol-1hexose to 0.90molH2mol-1hexose. VFA production and substrate utilisation rates were consistent with the hypothesis that end product inhibition arrests H2 production. The methodology facilitated the recovery of 37g of VFAs, and 30L H2 that was more than 99% pure, both of which are valuable, energy dense chemicals. Typically, short hydraulic and solid retention times, and depressed pH levels are used to suppress methanogenesis, but this limits H2 production. To produce H2 from real world, low grade biomass containing complex carbohydrates, longer hydraulic retention times (HRTs) are required. The proposed system increased H2 yields via increased substrate utilisation over longer HRTs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sacarosa / Reactores Biológicos / Electroquímica / Ácidos Grasos Volátiles / Biocombustibles / Hidrógeno Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sacarosa / Reactores Biológicos / Electroquímica / Ácidos Grasos Volátiles / Biocombustibles / Hidrógeno Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2017 Tipo del documento: Article