Your browser doesn't support javascript.
loading
Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells.
Sternfeld, Matthew J; Hinckley, Christopher A; Moore, Niall J; Pankratz, Matthew T; Hilde, Kathryn L; Driscoll, Shawn P; Hayashi, Marito; Amin, Neal D; Bonanomi, Dario; Gifford, Wesley D; Sharma, Kamal; Goulding, Martyn; Pfaff, Samuel L.
Afiliación
  • Sternfeld MJ; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Hinckley CA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States.
  • Moore NJ; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Pankratz MT; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Hilde KL; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Driscoll SP; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Hayashi M; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States.
  • Amin ND; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Bonanomi D; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Gifford WD; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States.
  • Sharma K; Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.
  • Goulding M; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States.
  • Pfaff SL; Medical Scientist Training Program, University of California, San Diego, La Jolla, United States.
Elife ; 62017 02 14.
Article en En | MEDLINE | ID: mdl-28195039
Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Médula Espinal / Interneuronas / Actividad Motora / Neuronas Motoras / Red Nerviosa Límite: Animals Idioma: En Revista: Elife Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Médula Espinal / Interneuronas / Actividad Motora / Neuronas Motoras / Red Nerviosa Límite: Animals Idioma: En Revista: Elife Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido