Your browser doesn't support javascript.
loading
Flavichalasines A-M, cytochalasan alkaloids from Aspergillus flavipes.
Wei, Guangzheng; Tan, Dongdong; Chen, Chunmei; Tong, Qingyi; Li, Xiao-Nian; Huang, Jinfeng; Liu, Junjun; Xue, Yongbo; Wang, Jianping; Luo, Zengwei; Zhu, Hucheng; Zhang, Yonghui.
Afiliación
  • Wei G; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Tan D; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Chen C; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Tong Q; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Li XN; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
  • Huang J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Liu J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Xue Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Wang J; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Luo Z; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Zhu H; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Zhang Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
Sci Rep ; 7: 42434, 2017 02 13.
Article en En | MEDLINE | ID: mdl-28205583
ABSTRACT
Two new tetracyclic cytochalasans, flavichalasines A and B (1 and 2), three new pentacyclic cytochalasans, flavichalasines C-E (3-5), and eight new tricyclic cytochalasans, flavichalasines F-M (6-13), together with eight known analogues (14-21), were isolated from the solid culture of Aspergillus flavipes. Structures of these new compounds were elucidated on the basis of extensive spectroscopic analyses including 1D, 2D NMR and HRESIMS data. Their absolute configurations were determined by comparison of their experimental ECD with either computed ECD or experimental ECD spectrum of known compound. The structure and absolute configuration of 2 were further determined by X-ray crystallographic diffraction. Flavichalasine A (1) represents the first example of cytochalasan with a terminal double bond at the macrocyclic ring and flavichalasine E (5) is the only cytochalasan with an α-oriented oxygen-bridge in D ring. These new compounds were evaluated for their cytotoxic activities against seven human cancer cell lines, of which, 6 and 14 displayed moderate inhibitory activities against tested cell lines. In addition, compounds 6 and 14 induced apoptosis of HL60 cells by activation of caspase-3 and degradation of PARP.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aspergillus / Citocalasinas / Alcaloides Límite: Humans Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aspergillus / Citocalasinas / Alcaloides Límite: Humans Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article