Your browser doesn't support javascript.
loading
Power-law statistics and universal scaling in the absence of criticality.
Touboul, Jonathan; Destexhe, Alain.
Afiliación
  • Touboul J; The Mathematical Neuroscience Laboratory, CIRB/Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), Paris, France.
  • Destexhe A; MYCENAE Team, INRIA, Paris, France.
Phys Rev E ; 95(1-1): 012413, 2017 Jan.
Article en En | MEDLINE | ID: mdl-28208383
Critical states are sometimes identified experimentally through power-law statistics or universal scaling functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime where the nodes have independent and identically distributed dynamics. We thus investigated the statistics of a system in which units are replaced by independent stochastic surrogates and found the same power-law statistics, indicating that these are not sufficient to establish criticality. We rather suggest that these are universal features of large-scale networks when considered macroscopically. These results put caution on the interpretation of scaling laws found in nature.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2017 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2017 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos