Power-law statistics and universal scaling in the absence of criticality.
Phys Rev E
; 95(1-1): 012413, 2017 Jan.
Article
en En
| MEDLINE
| ID: mdl-28208383
Critical states are sometimes identified experimentally through power-law statistics or universal scaling functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime where the nodes have independent and identically distributed dynamics. We thus investigated the statistics of a system in which units are replaced by independent stochastic surrogates and found the same power-law statistics, indicating that these are not sufficient to establish criticality. We rather suggest that these are universal features of large-scale networks when considered macroscopically. These results put caution on the interpretation of scaling laws found in nature.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Año:
2017
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Estados Unidos