Your browser doesn't support javascript.
loading
The Q-Cycle Mechanism of the bc1 Complex: A Biologist's Perspective on Atomistic Studies.
Crofts, Antony R; Rose, Stuart W; Burton, Rodney L; Desai, Amit V; Kenis, Paul J A; Dikanov, Sergei A.
Afiliación
  • Crofts AR; Department of Biochemistry, University of Illinois at Urbana-Champaign , 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.
  • Rose SW; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States.
  • Burton RL; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States.
  • Desai AV; Department of Biochemistry, University of Illinois at Urbana-Champaign , 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.
  • Kenis PJA; Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.
  • Dikanov SA; Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.
J Phys Chem B ; 121(15): 3701-3717, 2017 04 20.
Article en En | MEDLINE | ID: mdl-28241731
The Q-cycle mechanism of the bc1 complex is now well enough understood to allow application of advanced computational approaches to the study of atomistic processes. In addition to the main features of the mechanism, these include control and gating of the bifurcated reaction at the Qo-site, through which generation of damaging reactive oxygen species is minimized. We report a new molecular dynamics model of the Rhodobacter sphaeroides bc1 complex implemented in a native membrane, and constructed so as to eliminate blemishes apparent in earlier Rhodobacter models. Unconstrained MD simulations after equilibration with ubiquinol and ubiquinone respectively at Qo- and Qi-sites show that substrate binding configurations at both sites are different in important details from earlier models. We also demonstrate a new Qo-site intermediate, formed in the sub-ms time range, in which semiquinone remains complexed with the reduced iron sulfur protein. We discuss this, and a spring-loaded mechanism for modulating interactions of the iron sulfur protein with occupants of the Qo-site, in the context of control and gating roles. Such atomistic features of the mechanism can usefully be explored through simulation, but we stress the importance of constraints from physical chemistry and biology, both in setting up a simulation and in interpreting results.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rhodobacter sphaeroides / Complejo III de Transporte de Electrones / Simulación de Dinámica Molecular Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rhodobacter sphaeroides / Complejo III de Transporte de Electrones / Simulación de Dinámica Molecular Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos