Your browser doesn't support javascript.
loading
Integer programming-based method for observability of singleton attractors in Boolean networks.
Cheng, Xiaoqing; Qiu, Yushan; Hou, Wenpin; Ching, Wai-Ki.
Afiliación
  • Cheng X; School of Mathematics and Statistics, Xian Jiaotong Univeristy, Xian, People's Republic of China.
  • Qiu Y; College of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong, People's Republic of China. Yushan.Qiu@bcm.edu.
  • Hou W; Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong.
  • Ching WK; Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong.
IET Syst Biol ; 11(1): 30-35, 2017 02.
Article en En | MEDLINE | ID: mdl-28303791
Boolean network (BN) is a popular mathematical model for revealing the behaviour of a genetic regulatory network. Furthermore, observability, an important network feature, plays a significant role in understanding the underlying network. Several studies have been done on analysis of observability of BNs and complex networks. However, the observability of attractor cycles, which can serve as biomarker detection, has not yet been addressed in the literature. This is an important, interesting and challenging problem that deserves a detailed study. In this study, a novel problem was first proposed on attractor observability in BNs. Identification of the minimum set of consecutive nodes can be used to discriminate different attractors. Furthermore, it can serve as a biomarker for different disease types (represented as different attractor cycles). Then a novel integer programming method was developed to identify the desired set of nodes. The proposed approach is demonstrated and verified by numerical examples. The computational results further illustrates that the proposed model is effective and efficient.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Regulación de la Expresión Génica / Modelos Estadísticos / Proteoma / Redes Reguladoras de Genes / Modelos Genéticos Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: IET Syst Biol Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2017 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Regulación de la Expresión Génica / Modelos Estadísticos / Proteoma / Redes Reguladoras de Genes / Modelos Genéticos Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: IET Syst Biol Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2017 Tipo del documento: Article Pais de publicación: Reino Unido