Your browser doesn't support javascript.
loading
Prediction of chronic damage in systemic lupus erythematosus by using machine-learning models.
Ceccarelli, Fulvia; Sciandrone, Marco; Perricone, Carlo; Galvan, Giulio; Morelli, Francesco; Vicente, Luis Nunes; Leccese, Ilaria; Massaro, Laura; Cipriano, Enrica; Spinelli, Francesca Romana; Alessandri, Cristiano; Valesini, Guido; Conti, Fabrizio.
Afiliación
  • Ceccarelli F; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Sciandrone M; Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy.
  • Perricone C; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Galvan G; Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy.
  • Morelli F; Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy.
  • Vicente LN; Departemento de Matematica, Universidade de Coimbra, Coimbra, Portugal.
  • Leccese I; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Massaro L; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Cipriano E; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Spinelli FR; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Alessandri C; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Valesini G; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
  • Conti F; Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
PLoS One ; 12(3): e0174200, 2017.
Article en En | MEDLINE | ID: mdl-28329014
OBJECTIVE: The increased survival in Systemic Lupus Erythematosus (SLE) patients implies the development of chronic damage, occurring in up to 50% of cases. Its prevention is a major goal in the SLE management. We aimed at predicting chronic damage in a large monocentric SLE cohort by using neural networks. METHODS: We enrolled 413 SLE patients (M/F 30/383; mean age ± SD 46.3±11.9 years; mean disease duration ± SD 174.6 ± 112.1 months). Chronic damage was assessed by the SLICC/ACR Damage Index (SDI). We applied Recurrent Neural Networks (RNNs) as a machine-learning model to predict the risk of chronic damage. The clinical data sequences registered for each patient during the follow-up were used for building and testing the RNNs. RESULTS: At the first visit in the Lupus Clinic, 35.8% of patients had an SDI≥1. For the RNN model, two groups of patients were analyzed: patients with SDI = 0 at the baseline, developing damage during the follow-up (N = 38), and patients without damage (SDI = 0). We created a mathematical model with an AUC value of 0.77, able to predict damage development. A threshold value of 0.35 (sensitivity 0.74, specificity 0.76) seemed able to identify patients at risk to develop damage. CONCLUSION: We applied RNNs to identify a prediction model for SLE chronic damage. The use of the longitudinal data from the Sapienza Lupus Cohort, including laboratory and clinical items, resulted able to construct a mathematical model, potentially identifying patients at risk to develop damage.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lupus Eritematoso Sistémico Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Lupus Eritematoso Sistémico Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos