Your browser doesn't support javascript.
loading
Computational design of ligand-binding membrane receptors with high selectivity.
Feng, Xiang; Ambia, Joaquin; Chen, Kuang-Yui M; Young, Melvin; Barth, Patrick.
Afiliación
  • Feng X; Department of Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
  • Ambia J; Department of Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
  • Chen KM; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
  • Young M; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
  • Barth P; Department of Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
Nat Chem Biol ; 13(7): 715-723, 2017 Jul.
Article en En | MEDLINE | ID: mdl-28459439
ABSTRACT
Accurate modeling and design of protein-ligand interactions have broad applications in cell biology, synthetic biology and drug discovery but remain challenging without experimental protein structures. Here we developed an integrated protein-homology-modeling, ligand-docking protein-design approach that reconstructs protein-ligand binding sites from homolog protein structures in the presence of protein-bound ligand poses to capture conformational selection and induced-fit modes of ligand binding. In structure modeling tests, we blindly predicted, with near-atomic accuracy, ligand conformations bound to G-protein-coupled receptors (GPCRs) that have rarely been identified using traditional approaches. We also quantitatively predicted the binding selectivity of diverse ligands to structurally uncharacterized GPCRs. We then applied this technique to design functional human dopamine receptors with novel ligand-binding selectivity. Most blindly predicted ligand-binding specificities closely agreed with experimental validations. Our method should prove useful in ligand discovery approaches and in reprogramming the ligand-binding profile of membrane receptors that remain difficult to crystallize.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores Dopaminérgicos / Diseño Asistido por Computadora / Ligandos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores Dopaminérgicos / Diseño Asistido por Computadora / Ligandos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos