Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.
Sci Rep
; 7(1): 2349, 2017 05 24.
Article
en En
| MEDLINE
| ID: mdl-28539600
ABSTARCT: Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe3O4-large scale graphene composite is studied. The Fe3O4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe3O4 prepared from 0.04 M FeCl3. Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Rep
Año:
2017
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Reino Unido