Your browser doesn't support javascript.
loading
ROTS: An R package for reproducibility-optimized statistical testing.
Suomi, Tomi; Seyednasrollah, Fatemeh; Jaakkola, Maria K; Faux, Thomas; Elo, Laura L.
Afiliación
  • Suomi T; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
  • Seyednasrollah F; Department of Future Technologies, University of Turku, Turku, Finland.
  • Jaakkola MK; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
  • Faux T; Department of Mathematics and Statistics, University of Turku, Turku, Finland.
  • Elo LL; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
PLoS Comput Biol ; 13(5): e1005562, 2017 05.
Article en En | MEDLINE | ID: mdl-28542205
Differential expression analysis is one of the most common types of analyses performed on various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the process that detects features, such as genes or proteins, showing statistically significant differences between the sample groups under comparison. A major challenge in the analysis is the choice of an appropriate test statistic, as different statistics have been shown to perform well in different datasets. To this end, the reproducibility-optimized test statistic (ROTS) adjusts a modified t-statistic according to the inherent properties of the data and provides a ranking of the features based on their statistical evidence for differential expression between two groups. ROTS has already been successfully applied in a range of different studies from transcriptomics to proteomics, showing competitive performance against other state-of-the-art methods. To promote its widespread use, we introduce here a Bioconductor R package for performing ROTS analysis conveniently on different types of omics data. To illustrate the benefits of ROTS in various applications, we present three case studies, involving proteomics and RNA-seq data from public repositories, including both bulk and single cell data. The package is freely available from Bioconductor (https://www.bioconductor.org/packages/ROTS).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Modelos Estadísticos / Biología Computacional Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Modelos Estadísticos / Biología Computacional Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Finlandia Pais de publicación: Estados Unidos