Your browser doesn't support javascript.
loading
ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism.
Desai, Radha; Frazier, Ann E; Durigon, Romina; Patel, Harshil; Jones, Aleck W; Dalla Rosa, Ilaria; Lake, Nicole J; Compton, Alison G; Mountford, Hayley S; Tucker, Elena J; Mitchell, Alice L R; Jackson, Deborah; Sesay, Abdul; Di Re, Miriam; van den Heuvel, Lambert P; Burke, Derek; Francis, David; Lunke, Sebastian; McGillivray, George; Mandelstam, Simone; Mochel, Fanny; Keren, Boris; Jardel, Claude; Turner, Anne M; Ian Andrews, P; Smeitink, Jan; Spelbrink, Johannes N; Heales, Simon J; Kohda, Masakazu; Ohtake, Akira; Murayama, Kei; Okazaki, Yasushi; Lombès, Anne; Holt, Ian J; Thorburn, David R; Spinazzola, Antonella.
Afiliación
  • Desai R; MRC Laboratory, Mill Hill, London NW71AA, UK.
  • Frazier AE; Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.
  • Durigon R; Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.
  • Patel H; Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
  • Jones AW; Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.
  • Dalla Rosa I; Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.
  • Lake NJ; Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.
  • Compton AG; Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.
  • Mountford HS; Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.
  • Tucker EJ; Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.
  • Mitchell ALR; Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.
  • Jackson D; Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
  • Sesay A; Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
  • Di Re M; Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, UK.
  • van den Heuvel LP; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Burke D; Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK.
  • Francis D; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.
  • Lunke S; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.
  • McGillivray G; Department of Pathology, University of Melbourne, Melbourne 3052, Australia.
  • Mandelstam S; MRC Laboratory, Mill Hill, London NW71AA, UK.
  • Mochel F; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.
  • Keren B; Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.
  • Jardel C; The Florey Institute of Neuroscience and Mental Health Melbourne, Australia.
  • Turner AM; Departments of Radiology and Paediatrics, University of Melbourne, Melbourne, Australia.
  • Ian Andrews P; AP-HP, Department of Genetics, GHU Pitié-Salpêtrière, Paris, F-75651 France.
  • Smeitink J; Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France.
  • Spelbrink JN; Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France.
  • Heales SJ; AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France.
  • Kohda M; AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France.
  • Ohtake A; Inserm U1016; CNRS UMR 8104; Université Paris-Descartes-Paris 5; Institut Cochin, 75014 Paris, France.
  • Murayama K; Department of Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia.
  • Okazaki Y; School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia.
  • Lombès A; School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia.
  • Holt IJ; Department of Paediatric Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.
  • Thorburn DR; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Spinazzola A; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
Brain ; 140(6): 1595-1610, 2017 Jun 01.
Article en En | MEDLINE | ID: mdl-28549128
ABSTRACT
Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN Mitocondrial / Cerebelo / Adenosina Trifosfatasas / Enfermedades Mitocondriales / Proteínas Mitocondriales / Proteínas de la Membrana / Malformaciones del Sistema Nervioso Tipo de estudio: Risk_factors_studies Límite: Adult / Female / Humans / Infant / Male / Newborn Idioma: En Revista: Brain Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN Mitocondrial / Cerebelo / Adenosina Trifosfatasas / Enfermedades Mitocondriales / Proteínas Mitocondriales / Proteínas de la Membrana / Malformaciones del Sistema Nervioso Tipo de estudio: Risk_factors_studies Límite: Adult / Female / Humans / Infant / Male / Newborn Idioma: En Revista: Brain Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido
...