Your browser doesn't support javascript.
loading
Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae).
Verstraete, Brecht; Janssens, Steven; Rønsted, Nina.
Afiliación
  • Verstraete B; Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, 1307 Copenhagen, Denmark. Electronic address: brecht.verstraete@snm.ku.dk.
  • Janssens S; Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium. Electronic address: steven.janssens@plantentuinmeise.be.
  • Rønsted N; Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83S, 1307 Copenhagen, Denmark. Electronic address: nronsted@snm.ku.dk.
Mol Phylogenet Evol ; 113: 161-168, 2017 08.
Article en En | MEDLINE | ID: mdl-28552505
Every plant species on Earth interacts in some way or another with microorganisms and it is well known that certain forms of symbiosis between different organisms can drive evolution. Within some clades of Rubiaceae (coffee family), a specific plant-bacteria interaction exists in which non-pathological endophytes are present in the leaves of their hosts. It is hypothesized that the bacterial endophytes, either alone or by interacting with the host, provide chemical protection against herbivory or pathogens by producing toxic or otherwise advantageous secondary metabolites. If the bacteria indeed have a direct beneficial influence on their hosts, it is reasonable to assume that the endophytes may increase the fitness of their hosts and therefore it is probable that their presence also has an influence on the long-term evolution of the particular plant lineages. In this study, the possible origin in time of non-nodulated bacterial leaf symbiosis in the Vanguerieae tribe of Rubiaceae is elucidated and dissimilarities in evolutionary dynamics between species with endophytes versus species without are investigated. Bacterial leaf symbiosis is shown to have most probably originated in the Late Miocene, a period when the savannah habitat is believed to have expanded on the African continent and herbivore pressure increased. The presence of bacterial leaf endophytes appears to be restricted to Old World lineages so far. Plant lineages with leaf endophytes show a significantly higher speciation rate than plant lineages without endophytes, while there is only a small difference in extinction rate. The transition rate shows that evolving towards having endophytes is twice as fast as evolving towards not having endophytes, suggesting that leaf symbiosis must be beneficial for the host plants. We conclude that the presence of bacterial leaf endophytes may also be an important driver for speciation of host plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simbiosis / Bacterias / Hojas de la Planta / Rubiaceae / Evolución Biológica Idioma: En Revista: Mol Phylogenet Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simbiosis / Bacterias / Hojas de la Planta / Rubiaceae / Evolución Biológica Idioma: En Revista: Mol Phylogenet Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2017 Tipo del documento: Article Pais de publicación: Estados Unidos