Your browser doesn't support javascript.
loading
Progress towards a more predictive model for hohlraum radiation drive and symmetry.
Jones, O S; Suter, L J; Scott, H A; Barrios, M A; Farmer, W A; Hansen, S B; Liedahl, D A; Mauche, C W; Moore, A S; Rosen, M D; Salmonson, J D; Strozzi, D J; Thomas, C A; Turnbull, D P.
Afiliación
  • Jones OS; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Suter LJ; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Scott HA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Barrios MA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Farmer WA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Hansen SB; Sandia National Laboratory, Albuquerque, New Mexico 87185, USA.
  • Liedahl DA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Mauche CW; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Moore AS; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Rosen MD; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Salmonson JD; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Strozzi DJ; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Thomas CA; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Turnbull DP; Laboratory for Laser Energetics, Rochester, New York 14623, USA.
Phys Plasmas ; 24(5): 056312, 2017 May.
Article en En | MEDLINE | ID: mdl-28611532
ABSTRACT
For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phys Plasmas Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phys Plasmas Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA