Your browser doesn't support javascript.
loading
Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids.
Tan, Biyue; Grattapaglia, Dario; Martins, Gustavo Salgado; Ferreira, Karina Zamprogno; Sundberg, Björn; Ingvarsson, Pär K.
Afiliación
  • Tan B; Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, SE-90187, Sweden.
  • Grattapaglia D; Biomaterials Division, Stora Enso AB, Nacka, SE-13104, Sweden.
  • Martins GS; EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasilia, DF, 70770-910, Brazil.
  • Ferreira KZ; Universidade Católica de Brasília- SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil.
  • Sundberg B; Veracel Celulose S.A., Eunápolis, BA, 45.820-970, Brazil.
  • Ingvarsson PK; Veracel Celulose S.A., Eunápolis, BA, 45.820-970, Brazil.
BMC Plant Biol ; 17(1): 110, 2017 06 29.
Article en En | MEDLINE | ID: mdl-28662679
BACKGROUND: Genomic prediction is a genomics assisted breeding methodology that can increase genetic gains by accelerating the breeding cycle and potentially improving the accuracy of breeding values. In this study, we use 41,304 informative SNPs genotyped in a Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla parents and their 949 F1 hybrids to develop genomic prediction models for eight phenotypic traits - basic density and pulp yield, circumference at breast height and height and tree volume scored at age three and six years. We assessed the impact of different genomic prediction methods, the composition and size of the training and validation set and the number and genomic location of SNPs on the predictive ability (PA). RESULTS: Heritabilities estimated using the realized genomic relationship matrix (GRM) were considerably higher than estimates based on the expected pedigree, mainly due to inconsistencies in the expected pedigree that were readily corrected by the GRM. Moreover, the GRM more precisely capture Mendelian sampling among related individuals, such that the genetic covariance was based on the true proportion of the genome shared between individuals. PA improved considerably when increasing the size of the training set and by enhancing relatedness to the validation set. Prediction models trained on pure species parents could not predict well in F1 hybrids, indicating that model training has to be carried out in hybrid populations if one is to predict in hybrid selection candidates. The different genomic prediction methods provided similar results for all traits, therefore either GBLUP or rrBLUP represents better compromises between computational time and prediction efficiency. Only slight improvement was observed in PA when more than 5000 SNPs were used for all traits. Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled exclusively in genic regions. CONCLUSIONS: The size and composition of the training set and number of SNPs used are the two most important factors for model prediction, compared to the statistical methods and the genomic location of SNPs. Furthermore, training the prediction model based on pure parental species only provide limited ability to predict traits in interspecific hybrids. Our results provide additional promising perspectives for the implementation of genomic prediction in Eucalyptus breeding programs by the selection of interspecific hybrids.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Eucalyptus / Hibridación Genética / Modelos Biológicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2017 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Eucalyptus / Hibridación Genética / Modelos Biológicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2017 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido