Your browser doesn't support javascript.
loading
Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.
Villota, Natalia; Lomas, Jose M; Camarero, Luis M.
Afiliación
  • Villota N; Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain. Electronic address: natalia.villota@ehu.es.
  • Lomas JM; Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.
  • Camarero LM; Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.
Ultrason Sonochem ; 39: 439-445, 2017 Nov.
Article en En | MEDLINE | ID: mdl-28732966
Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe2+/kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe2+/kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2017 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2017 Tipo del documento: Article Pais de publicación: Países Bajos