Your browser doesn't support javascript.
loading
Joint Data Harmonization and Group Cardinality Constrained Classification.
Zhang, Yong; Park, Sang Hyun; Pohl, Kilian M.
Afiliación
  • Zhang Y; Department of Psychiatry & Behavioral Sciences, Stanford University, USA.
  • Park SH; Center of Health Sciences, SRI International, USA.
  • Pohl KM; Department of Psychiatry & Behavioral Sciences, Stanford University, USA.
Med Image Comput Comput Assist Interv ; 9900: 282-290, 2016 Oct.
Article en En | MEDLINE | ID: mdl-28758167
To boost the power of classifiers, studies often increase the size of existing samples through the addition of independently collected data sets. Doing so requires harmonizing the data for demographic and acquisition differences based on a control cohort before performing disease specific classification. The initial harmonization often mitigates group differences negatively impacting classification accuracy. To preserve cohort separation, we propose the first model unifying linear regression for data harmonization with a logistic regression for disease classification. Learning to harmonize data is now an adaptive process taking both disease and control data into account. Solutions within that model are confined by group cardinality to reduce the risk of overfitting (via sparsity), to explicitly account for the impact of disease on the inter-dependency of regions (by grouping them), and to identify disease specific patterns (by enforcing sparsity via the l0-'norm'). We test those solutions in distinguishing HIV-Associated Neurocognitive Disorder from Mild Cognitive Impairment of two independently collected, neuroimage data sets; each contains controls and samples from one disease. Our classifier is impartial to acquisition difference between the data sets while being more accurate in diseases seperation than sequential learning of harmonization and classification parameters, and non-sparsity based logistic regressors.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Complejo SIDA Demencia / Disfunción Cognitiva Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Med Image Comput Comput Assist Interv Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Complejo SIDA Demencia / Disfunción Cognitiva Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Med Image Comput Comput Assist Interv Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania