Your browser doesn't support javascript.
loading
LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.
Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M.
Afiliación
  • Sparrow AJ; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK.
  • Sweetman D; Zoetis VMRD GTR, Livestock Wellness and Performance, 333 Portage Street, Kalamazoo, MI 49007, USA.
  • Welham SJM; School of Biosciences, University of Nottingham, Nottingham, UK. Electronic address: simon.welham@nottingham.ac.uk.
Life Sci ; 186: 17-24, 2017 Oct 01.
Article en En | MEDLINE | ID: mdl-28774704
ABSTRACT

AIMS:

Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. MAIN

METHODS:

E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. KEY

FINDINGS:

Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; P<0.01). This was consistent with effects on HK2 cells highlighting a severe impact of BMS5 on formation of the mitotic spindle and centriole positioning. DiI labelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5.

SIGNIFICANCE:

Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Organogénesis / Desarrollo Fetal / Quinasas Lim / Túbulos Renales Proximales / Mesonefro Límite: Animals / Humans Idioma: En Revista: Life Sci Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Organogénesis / Desarrollo Fetal / Quinasas Lim / Túbulos Renales Proximales / Mesonefro Límite: Animals / Humans Idioma: En Revista: Life Sci Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido
...