Your browser doesn't support javascript.
loading
Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration.
Zhou, Zhuxian; Liu, Xiangrui; Zhu, Dingcheng; Wang, Yue; Zhang, Zhen; Zhou, Xuefei; Qiu, Nasha; Chen, Xuesi; Shen, Youqing.
Afiliación
  • Zhou Z; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Liu X; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Zhu D; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Wang Y; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Zhang Z; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Zhou X; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Qiu N; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
  • Chen X; Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China.
  • Shen Y; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China. Electronic address: shenyq@zju.edu.cn.
Adv Drug Deliv Rev ; 115: 115-154, 2017 06 01.
Article en En | MEDLINE | ID: mdl-28778715
ABSTRACT
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Terapia Genética / Técnicas de Transferencia de Gen / Nanopartículas / Vectores Genéticos / Neoplasias Límite: Animals / Humans Idioma: En Revista: Adv Drug Deliv Rev Asunto de la revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Terapia Genética / Técnicas de Transferencia de Gen / Nanopartículas / Vectores Genéticos / Neoplasias Límite: Animals / Humans Idioma: En Revista: Adv Drug Deliv Rev Asunto de la revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Año: 2017 Tipo del documento: Article País de afiliación: China