Your browser doesn't support javascript.
loading
Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
Jameson, Eleanor; Doxey, Andrew C; Airs, Ruth; Purdy, Kevin J; Murrell, J Colin; Chen, Yin.
Afiliación
  • Jameson E; 1​School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK.
  • Doxey AC; 2​Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
  • Airs R; 3​Plymouth Marine Laboratory, Prospect Pl, Plymouth PL1 3DH, UK.
  • Purdy KJ; 1​School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK.
  • Murrell JC; 4​University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
  • Chen Y; 1​School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK.
Microb Genom ; 2(9): e000080, 2016 09.
Article en En | MEDLINE | ID: mdl-28785417
ABSTRACT
Existing metagenome datasets from many different environments contain untapped potential for understanding metabolic pathways and their biological impact. Our interest lies in the formation of trimethylamine (TMA), a key metabolite in both human health and climate change. Here, we focus on bacterial degradation pathways for choline, carnitine, glycine betaine and trimethylamine N-oxide (TMAO) to TMA in human gut and marine metagenomes. We found the TMAO reductase pathway was the most prevalent pathway in both environments. Proteobacteria were found to contribute the majority of the TMAO reductase pathway sequences, except in the stressed gut, where Actinobacteria dominated. Interestingly, in the human gut metagenomes, a high proportion of the Proteobacteria hits were accounted for by the genera Klebsiella and Escherichia. Furthermore Klebsiella and Escherichia harboured three of the four potential TMA-production pathways (choline, carnitine and TMAO), suggesting they have a key role in TMA cycling in the human gut. In addition to the intensive TMAO-TMA cycling in the marine environment, our data suggest that carnitine-to-TMA transformation plays an overlooked role in aerobic marine surface waters, whereas choline-to-TMA transformation is important in anaerobic marine sediments. Our study provides new insights into the potential key microbes and metabolic pathways for TMA formation in two contrasting environments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Actinobacteria / Ecosistema / Proteobacteria / Metagenómica / Minería de Datos / Microbioma Gastrointestinal / Metilaminas Límite: Humans Idioma: En Revista: Microb Genom Año: 2016 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Actinobacteria / Ecosistema / Proteobacteria / Metagenómica / Minería de Datos / Microbioma Gastrointestinal / Metilaminas Límite: Humans Idioma: En Revista: Microb Genom Año: 2016 Tipo del documento: Article País de afiliación: Reino Unido