Your browser doesn't support javascript.
loading
Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1 H-MR spectroscopy-A multi-center study.
Zarinabad, Niloufar; Abernethy, Laurence J; Avula, Shivaram; Davies, Nigel P; Rodriguez Gutierrez, Daniel; Jaspan, Tim; MacPherson, Lesley; Mitra, Dipayan; Rose, Heather E L; Wilson, Martin; Morgan, Paul S; Bailey, Simon; Pizer, Barry; Arvanitis, Theodoros N; Grundy, Richard G; Auer, Dorothee P; Peet, Andrew.
Afiliación
  • Zarinabad N; Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Abernethy LJ; Birmingham Children's Hospital, Birmingham, United Kingdom.
  • Avula S; Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom.
  • Davies NP; Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom.
  • Rodriguez Gutierrez D; Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Jaspan T; Birmingham Children's Hospital, Birmingham, United Kingdom.
  • MacPherson L; Department of Imaging and Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
  • Mitra D; The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom.
  • Rose HEL; Medical Physics, Nottingham University Hospital, Queen's Medical Centre, Nottingham, United Kingdom.
  • Wilson M; The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom.
  • Morgan PS; Neuroradiology, Nottingham University Hospital, Queen's Medical Centre, Nottingham, United Kingdom.
  • Bailey S; Birmingham Children's Hospital, Birmingham, United Kingdom.
  • Pizer B; Neuroradiology Department, Newcastle upon Tyne Hospitals, Newcastle upon Tyne, United Kingdom.
  • Arvanitis TN; Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom.
  • Grundy RG; Birmingham Children's Hospital, Birmingham, United Kingdom.
  • Auer DP; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom.
  • Peet A; The Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom.
Magn Reson Med ; 79(4): 2359-2366, 2018 04.
Article en En | MEDLINE | ID: mdl-28786132
PURPOSE: 3T magnetic resonance scanners have boosted clinical application of 1 H-MR spectroscopy (MRS) by offering an improved signal-to-noise ratio and increased spectral resolution, thereby identifying more metabolites and extending the range of metabolic information. Spectroscopic data from clinical 1.5T MR scanners has been shown to discriminate between pediatric brain tumors by applying machine learning techniques to further aid diagnosis. The purpose of this multi-center study was to investigate the discriminative potential of metabolite profiles obtained from 3T scanners in classifying pediatric brain tumors. METHODS: A total of 41 pediatric patients with brain tumors (17 medulloblastomas, 20 pilocytic astrocytomas, and 4 ependymomas) were scanned across four different hospitals. Raw spectroscopy data were processed using TARQUIN. Borderline synthetic minority oversampling technique was used to correct for the data skewness. Different classifiers were trained using linear discriminative analysis, support vector machine, and random forest techniques. RESULTS: Support vector machine had the highest balanced accuracy for discriminating the three tumor types. The balanced accuracy achieved was higher than the balanced accuracy previously reported for similar multi-center dataset from 1.5T magnets with echo time 20 to 32 ms alone. CONCLUSION: This study showed that 3T MRS can detect key differences in metabolite profiles for the main types of childhood tumors. Magn Reson Med 79:2359-2366, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Neoplasias Encefálicas / Reconocimiento de Normas Patrones Automatizadas / Imagen por Resonancia Magnética Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies Límite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Neoplasias Encefálicas / Reconocimiento de Normas Patrones Automatizadas / Imagen por Resonancia Magnética Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies Límite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos