Your browser doesn't support javascript.
loading
Low rank approximation methods for MR fingerprinting with large scale dictionaries.
Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra.
Afiliación
  • Yang M; Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
  • Ma D; Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
  • Jiang Y; Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
  • Hamilton J; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
  • Seiberlich N; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
  • Griswold MA; Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
  • McGivney D; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
Magn Reson Med ; 79(4): 2392-2400, 2018 04.
Article en En | MEDLINE | ID: mdl-28804918
ABSTRACT

PURPOSE:

This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. THEORY AND

METHODS:

We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches.

RESULTS:

T1 , T2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence.

CONCLUSION:

The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 792392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética Tipo de estudio: Clinical_trials / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos