Your browser doesn't support javascript.
loading
Nanopore extended field-effect transistor for selective single-molecule biosensing.
Ren, Ren; Zhang, Yanjun; Nadappuram, Binoy Paulose; Akpinar, Bernice; Klenerman, David; Ivanov, Aleksandar P; Edel, Joshua B; Korchev, Yuri.
Afiliación
  • Ren R; Department of Medicine, Imperial College London, London, W12 0NN, UK.
  • Zhang Y; Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
  • Nadappuram BP; Department of Medicine, Imperial College London, London, W12 0NN, UK. yanjun.zhang@imperial.ac.uk.
  • Akpinar B; Tianjin Neurological Institute, Tianjin Medical University General Hospital, Heping Qu, 300052, China. yanjun.zhang@imperial.ac.uk.
  • Klenerman D; Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
  • Ivanov AP; Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
  • Edel JB; Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
  • Korchev Y; Department of Chemistry, Imperial College London, London, SW7 2AZ, UK. alex.ivanov@imperial.ac.uk.
Nat Commun ; 8(1): 586, 2017 09 19.
Article en En | MEDLINE | ID: mdl-28928405
ABSTRACT
There has been a significant drive to deliver nanotechnological solutions to biosensing, yet there remains an unmet need in the development of biosensors that are affordable, integrated, fast, capable of multiplexed detection, and offer high selectivity for trace analyte detection in biological fluids. Herein, some of these challenges are addressed by designing a new class of nanoscale sensors dubbed nanopore extended field-effect transistor (nexFET) that combine the advantages of nanopore single-molecule sensing, field-effect transistors, and recognition chemistry. We report on a polypyrrole functionalized nexFET, with controllable gate voltage that can be used to switch on/off, and slow down single-molecule DNA transport through a nanopore. This strategy enables higher molecular throughput, enhanced signal-to-noise, and even heightened selectivity via functionalization with an embedded receptor. This is shown for selective sensing of an anti-insulin antibody in the presence of its IgG isotype.Efficient detection of single molecules is vital to many biosensing technologies, which require analytical platforms with high selectivity and sensitivity. Ren et al. combine a nanopore sensor and a field-effect transistor, whereby gate voltage mediates DNA and protein transport through the nanopore.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Técnicas Biosensibles / Nanotecnología / Insulina Tipo de estudio: Diagnostic_studies / Evaluation_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Técnicas Biosensibles / Nanotecnología / Insulina Tipo de estudio: Diagnostic_studies / Evaluation_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido